Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis In Human SW1990 Pancreatic Cancer Cells
نویسندگان
چکیده
BACKGROUND Pancreatic cancer is considered a chemoresistant neoplasm with extremely dismal prognosis and gemcitabine treatment is associated with many side effects and poor overall survival. The study aimed at developing a new nanobioconjugate, which specifically delivered gemcitabine and anti-EGFR antibody into pancreatic cancer cells. MATERIAL AND METHODS The novel nanodrug is based on chitosan platform, which is non-toxic, biocompatibility and biodegradable. We measured the effects of proliferation and metastasis on SW1990 by CCK-8 assay, colony formation assay, wound healing assay and Transwell assay. The expression of related proteins were evaluated by Western blot. RESULTS We synthesized Abc-GC-gemcitabine nanoparticles successfully with the encapsulation rate of nanobioconjugates was 91.63% and the drug loadings was 9.97%. Both GC-gemcitabine microspheres solution (GC group) and Abc-GC-gemcitabine microspheres solution (Abc group) inhibited cells proliferation, colony formation, migration and invasion in SW1990 cells dramatically. Moreover, Abc-GC-gemcitabine microspheres expressed more significant inhibited action than GC-gemcitabine microspheres efficiently CONCLUSIONS Our data suggested that Abc-GC-gemcitabine nanoparticles could have promising potential in treating metastasized and chemoresistant pancreatic cancer by enhancing the drug efficacy and minimizing off target effects.
منابع مشابه
Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملPreparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کامل(SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
Abstract The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification me...
متن کاملEmodin reverses gemcitabine resistance in pancreatic cancer cells via the mitochondrial apoptosis pathway in vitro
Gemcitabine resistance is a common problem of pancreatic cancer chemotherapy, and how to reverse it plays an important role in the treatment of pancreatic cancer. This study investigated the effect of emodin on the gemcitabine-resistant pancreatic cancer cell line SW1990/Gem, and explored the potential mechanism of its action. SW1990/Gem was obtained by culture of the pancreatic cancer cell lin...
متن کاملEmodin strongly inhibited the proliferation and induced the apoptosis of both pancreatic cancer cell lines. Furthermore, emodin combined with gemcitabine induced a higher percentage of growth inhibition and apoptosis in both pancreatic cancer cell lines
Many studies have demonstrated that emodin inhibits the growth and induces the apoptosis and chemosensitization of various cancer cells in animal models. The aim of this study was to investigate the molecular mechanism of the chemo-sensitization potential of emodin on gemcitabine in pancreatic cancer cell lines via inhibition of nuclear factor-κB (nF-κB). SW1990 and SW1990/GZ cells were treated...
متن کامل